08/006267 A1 I KO 0 0 OO0 00 0

e
=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
17 January 2008 (17.01.2008)

‘ﬂm A OO0 0O O O

(10) International Publication Number

WO 2008/006267 Al

(51) International Patent Classification:
GOGF 17/40 (2006.01) G0O6Q 30/00 (2006.01)
G0O6Q 20/00 (2006.01)

(21) International Application Number:
PCT/CN2007/000496

(22) International Filing Date:
13 February 2007 (13.02.2007)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

200610061542.5 5 July 2006 (05.07.2006) CN

(71) Applicant and

(72) Inventor: LEE, Shu Tak, Raymond [CN/CN]; Flat D,
13/F, Winfield Gardens, No. 34-40, Shan Kwong Road,
Happy Valley, Hong Kong (CN).

(74) Agent: SHENZHEN STANDARD PATENT &
TRADEMARK AGENT LTD.; Room 810-815, Yinzuo
IntT1 Building, No.1056 Shennan Boulevard, Shenzhen,
Guangdong 518040 (CN).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS,
LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: INTELLIGENT AGENT BASED DEVELOPMENT PLATFORM

£
S A d
2 // Data Layer /
g
[y 7
£ / Neural Matwork Layey /
;"“ s
0
‘_T: Applicstion Laver
1ATo
o, : 1ATo IATo {ATo 1ATo
AP tg;’::'on eMiner [WeatherMan| WShopper A?ﬁt\z:gr Survelliant
i Ontology o 4 ol © (<
4> Ontol 1AToSC 1ATOMC 1AToKC IAToLC 1AToEC
Layer &
&
@ '“T:}'g:m Sensory Area | Loglcal Reasoning Area | Analytical Area @‘5’
: L . v S ,\ode
e o + g o ¥
“{pTechnalogy | IAT.SDK " O RTo ML /
Layer e P RO
@Supportiﬂg
Layer 1ATo System Component
&
&5

(57) Abstract: An intelligent agent technology (IAT) based development platform comprises a first module which can provide
& full artificial intelligence and intelligent agent technology (IATology) based application interface for constructing various intelligent
agent application and a second module for data storage and analyzing data intelligently as well as providing the analyzed results
to the first module. An intelligent agent system with real sense, analysis and logical illation capability is provided. In addition an
intelligent ontological agent based development environment (IATo) is provided to be the basic frame and development platform of

the future intelligent E business.

10

15

20

25

WO 2008/006267 PCT/CN2007/000496

INTELLIGENT AGENT BASED DEVELOPMENT PLATFORM

FIELD OF THE INVENTION

[0001] The present invention relates to artificial intelligent and information
technology, particularly, relates to an intelligent ontological agent model as the

basic framework and development environment for e-commerce applications.

BACKGROUND OF THE INVENTION

[0002] In information technology, especially intelligence and computer
science field, intelligent agent is considered to a device which can recognize the
environment by its sensors, and respond to the environment with its executive
device. For example, referring to human body, eyes, ears and other sensory
organs are the cognitive devices, while the executive devices are hands, legs,
mouths and other parts of the body. When it comes to software, the cognitive.
and executive organs are encoded character streams.

[0003] The main purpose of artificial intelligence is to design intelligent agent
programs, that is, to implement the mapping methods of cognition and action.
This intelligent agent program has to operate on a certain computing device
called framework. Said framework may be a common computer, or a special-
hardware tailored to perform certain tasks, or certain software between a
computer and intelligent agent program for providing a certain degree of
isolation, which enables programming in higher layers. In general, the structure
enables the information as received by the sensors to transform as cognition,
and provide feedback via execution program and hence produce a response.
[0004] Owing to the rapid development of e-Commerce and Internet
technology in the recent years, many different e-Commerce applications and

mobile computing systems have been operated in this cyberspace.

10

15

20

25

WO 2008/006267 PCT/CN2007/000496

[0005] E-business is viewed as a big business opportunity as more and more
people are focusing on the Internet. Numerous products are now available on
the Internet, and product searching has become a burden for buyers. Meanwhile,
sellers are difficult to locate target buyers and provide targeted promotion. It
will be convenient to implement intelligent agent system, such that the agent
system may actively search for online advertisements for buyers, go shopping
online and even bargain for a better price, while the agent system
simultaneously works for the seller to analyze different consumers’ trends, and
promote certain products to potential customers.

[0006] Therefore, in this 'sea' of information pool, the provision: of an
intelligent-based system (such as intelligent agents) seems to be a 'New Hope'
in the future. However, contemporary agent-based developing environment
such as IBM Aglet and ObjectSpace Voyager the provision of 'real' intelligent
agent functionality is failed to support.

BRIEF SUMMARY OF THE INVENTION

[0007] We propose an innovative intelligent ontological agent-based
development environment namely IATopia - "Intelligent Agent Utopia". The
aim of IATopia is to provide comprehensive AI and ontological agent-based
APIs and applications for future e-commerce and ontological-based
applications.

[0008] The framework composes of two main model. The first module is
“Application-Ontolgy-Intelligent-Technology-Supporting Layer” (AOITS) and
the second module is “Data-Neural Network-Application Layer” (DNA)

[0009] The first module is a full artificial intelligence and ontology agent
based application interface which constructs various intelligent agent

application; and

10

15

20

25

WO 2008/006267 PCT/CN2007/000496

[0010] The second module is used for data storage, intelligent data analysis
process, and providing analyzed results to said first module.

[0011] The said first module comprises:

[0012] Application layer, comprises various intelligent ontology agent based
application programs, said application programs are integrated by intelligent
agent components of the intelligent layer and the data of said second module.
[0013] Ontology layer, base on the brain knowledge of agent, provides
necessary knowledge for agent to initiate its logical and knowledgeable
thinking. This layer of brain knowledge is named IATology-20000.

[0014] Intelligent layer, provides artificial intelligence basic base on the sense

field, logical illation field and analysis field, while utilizes agent components

- provided by technology layer.-

[0015] Technology layer, provides necessary mobile agent object application.
program interface for intelligent agent components of intelligent layer,
comprises providing IATo SDK software development tools of full

multi-intelligent agent based development - platform, and providing

. understandable marking language to increase the communication of intelligent

agent and IATo ML development tools of data transferring; and

[0018] Supporting layer, provides all necessary systems for supporting said
layer, comprises programming languages, communication protocols and
standardized file exchange format that are adopted to facilitate the development
of the IATopia framework.

[0016] The said second module comprises:

[0017] Data layer, for storing raw data from intelligent agent brain. It is also
the source of knowledge.

[0018] Neural network layer, for manipulating the data stored in the data layer

so that knowledge can be generated and the thinking process can be initiated as

10

15

20

25

WO 2008/006267 PCT/CN2007/000496

well as the agent can learn or correct itself according to its experiences; and
[0019] Application layer, with the fully support from the data layer and neural
network layer, agent have enough knowledge and thinking capability to live and
work autonomously.

[0020] The application programs in the said application layer comprise:

[0021] IATo eMiner, an intelligent ontological web-mining agent system for
e-shopping.

[0022] IATo InfoSeeker, an intelligent ontological knowledge based
information searching system.

[0023] IATo WeatherMAN, an intelligent ontological weather forecasting
agent.

[0024] IATo WShopper, an integrated ontological intelligent fuzzy shopping
agent for intelligent mobile shopping on the Internet. -

[0025] IATo Stock Advisor, an intelligent ontological agent based stock
prediction system.

[0026] IATo Surveillant, the automatic ontological agent based surveillance
system.

[0027] The said intelligent agent comprises the following requirements:
autonomous, mobile, reactive, proactive, adaptive, robust, communicative,
learning, task-oriented, goal-driven.

[0028] The said IATo SDK development tools comprise all the mandatory
componenfs arranged on intelligent agent development platform. Said
mandatory components comprise intelligent agent managing system,
information transferring server and index arbitrator.

[0029] The basic function and run time properties of the said intelligent agent
are defined by intelligent agent, lifecycle manager that provides all the control

function, registration manager that records intelligent agent registration

.10

15

20

25

WO 2008/006267 PCT/CN2007/000496

information in the intelligent agent development platform, and communication -
manager that controls the message transfer in intelligent agent platform.

[0030] The said application program interface comprises: the first region that
provides the functions of creating, activating, invalidating, copying, distributing,
releasing and exiting, the second region that provides the functions of writing
logs and displaying the information of activation in the server, the third region
that provides tree type intelligent agent list, and the forth region that provides
information broadcasting type.

[0031] The present invention provides an intelligent agent system with real
sense, analysis and logical illation capability. In addition, an intelligenf agent
utopia (IATo) based development platform is provided to be the basic frame and

development platform of the future intelligent E-business.

BRIEF DESCRIPTION OFTHE DRAWINGS

[0032] Figure 1 is the block diagram of the present invention.

[0033] Figure 2 is the block diagram of the user interface, in accordance with
the present invention.

[0034] Figure 3 is the basic structure diagram of IATo SDK Intelligent Agent
platform, in accordance with the present invention.

[0035] Figure 4 is the schematic diagram of Intelligent Agent communication,
in accordance with the present invention.

[0036] Figure 5 is the schematic diagram of registration Intelligent Agent, in
accordance with the present invention.

[0037] Figure 6 is the schematic diagram of creation Intelligent Agent, n
accordance with the present invention.

[0038] Figure 7 is the schematic diagram of dispatch Intelligent Agent

(sending end), in accordance with the present invention.

10

15

20

25

WO 2008/006267 PCT/CN2007/000496

[0039] Figure 8 is the schematic diagram of dispatch Intelligent Agent
(receiving end), in accordance with the present invention.

[0040] Figure 9 is the schematic diagram of the user interface, in accordance
with the present invention.

[0041] Figure 10 is the schematic diagram of creation Intelligent Agent dialog
box, in accordance with the present invention.

[0042] Figure 11 is the schematic diagram of dispatch Intelligent Agent dialog

box, in accordance with the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0043] The present invention disclosed a new intelligent ontology agent based
development platform, called The Utopia of Intelligent Agent (IATopia) based
development platform. The object is to develop a fully integrated intelligent
ontology based multi-Intelligent Agent system, so as to be the basic frame and.
development platform of the future intelligent E-business.-

[0044] The present invention may implement various Intelligent Agent based
applications, comprising IATo TravelGuider and IATo Stock Advisor, etc.
[0045] In order to clarify the object, technical scheme and advantages of the
present invention, various embodiments are described to provide detailed
description of the present invention.

[0046] The framework of the present invention (functions and modules):
[0047] The present invention has fully integrated intelligent agent E-business
application based intelligent ontology agent module. The system framework is
shown in figure 1, unlike the Intelligent Agent system and Application
Programming Interfaces (APIs) in the prior art, such as, IBM Aglets,
ObjectSpace Voyager and IATo products. The present invention focuses on

multi-Intelligent Agent communication and automatic operation. The object is

10

15

20

25

WO 2008/006267 PCT/CN2007/000496

to provide full artificial intelligence and ontology agent based APIs, as well as
future E-business application and ontology agent based application.

[0048] As shown in figure 1, the framework of the present invention
comprises two main modules: The first module is Application-Ontology
—Intelligent-Technology-Supporting Layer (AOITS) module, the second module
is Data-Nerual-Network-Application Layer (DNA) module. AOITS module
comprises application layer, ontology layer, intelligent layer, technology layer
and supporting layer. DNA module comprises data layer, neural network layer
and application layer. Various layers of AOITS are described in detail as
follows.

[0049] Application layer: On the top layer of the system, comprises different
intelligent ontology agent based application programs. Said application
programs (IATo) are integrated by the intelligent ontology agent components
from intelligent layer and data knowledge fields from DNA module. Various:
exemplary application programs are realized in this layer, which comprises:
[0050] IATo eMiner, an intelligent ontological web-mining agent system for
e-shopping, comprises 1) IATo Authenicator-an automatic authentication system
based on human face recognition, and 2) IATo Shopper- a fuzzy agent based
Internet shopping agent.

[0051] IATo InfoSecker, an intelligent ontological knowledge based
information searching system.

[0052] IATo WeatherMAN, an intelligent ontological weather forecasting
agent, which is the exten sion of previous research on mult-station weather:
forecasting using fuzzy neural networks. Unlike traditional Web-mining agents,
which focus on the automatic extraction and provision of the latest weather
information, IATo WeatherMAN possesses neural network based weather

forecasting capability (Al services provided by the ‘Conscious Layer’ of the

10

15

20

25

WO 2008/006267 PCT/CN2007/000496

IATopia module) to act as a “virtual’ weather reporter as well as an ‘intelligent’
weather forecaster for weather prediction.

[0053] IATo Shopper series, an integrated ontological intelligent fuzzy
shopping agent with WAP technology for intelligent mobile shopping on the
Internet.

[0054] IATo Stock Advisor, an intelligent ontological agent based stock
prediction system using HRBFN (Hybrid Radial Basis Function Recurrent
Network) for time series prediction.

[0055] IATo Surveillant, the automatic ontological agent based surveillance
system.

[0056] Ontology Layer: based on the brain ontology knowledge of intelligent
agent, provides necessary knowledge for intelligent agent to initiate' its "
reasonable and knowledgeable thinking process. Said layer provides said’
ontology frame, that is the ontology centre, comprises the following 5 modules:
Intelligent ontology based sensation centre (IAToSC), intelligent ontology based
memory centre (IAToMC), intelligent ontology based knowledge centre
(IAToKC), intelligent ontology based language centre (IAToLC), intelligent
ontology based ethics centre (IAToEC).

[0057] Said five functional modules measure up the FIPA ontology service
specification (XC00086D), an ontology agent (IATo Agent) will be designed
and constructed with the following functions (namely, the “RATE”
requirements):

[0058] Representation: to represent and discover public ontologies (especially
ontologies in foreign platforms)

[0059] Administration: to maintain and administer the services and facilities
provided by the iJAOS.

[0060] Translation: to communicate and translate concepts, meanings, and

10

~15

20

25

WO 2008/006267 PCT/CN2007/000496

universals between different ontologies and/or different content languages.
[0061] Explanation: To respond to and explain all queries concerning
relationships between different concepts and ontologies.

[0062] Intelligent layer: This layer provides the intelligent basis of the
IATopia system, using the agent components provided by the ‘Technology
layer’. The ‘Conscious Layer’ consists of the following three main intelligent
functional areas:

[0063] Sensory area, for the recognition and interpretation of incoming
stimulates, comprises: visual sensory agents using EGDLM (Elastic Graph
Dynamic Link Model) for invariant visual object recognition, and, auditory
sensory agents based on wavelet based feature extraction and interpretation
technique.

[0064] Logic reasoning area, conscious and reasoning support, such as fuzzy
angd GA (genetic Algorithms) rule based systems.

[0065] Analytical area, comprises various Al tools for: analytical calculation,
such as recurrent neural network based analysis for real-time prediction and
data mining.

[0066] The technology layer: This layer provides all the necessary mobile
agent implementation APIs for the development of intelligent agent components
in the ‘Conscious Layer’.

[0067] In the proposed latest version (v2.0) of the IATopia module, instead of
IBM Aglets as the agent ‘backbone’, two innovative IATopia development tools
have been developed, namely:

[0068] IATo SDK (IATopia Development Kit) and

[0069] IATo ML(IATopia Markup Language)

[0070] The main function of IATo SDK is to provide a comprehensive

intelligent multi-agent based development platform with the provision for all

10

.-15

20

25

WO 2008/006267 PCT/CN2007/000496

the intelligent agent-based Java classes and library, comprises: agents’
communications, negotiations, intelligent agent tools, etc. The main function of
JATo ML is the provision of a comprehensive markup language to enhance the
intelligent agent communication and data exchange.

[0071] In this layer, server-side computing using Java Servlet technology is
also adopted due to the fact that for certain intelligent agent-based applications,
such as the IATo Shopper Series, in which limited resources (in terms of
memory and computational speed) are provided by the WAP devices (e.g. WAP
phones), all the IATo agents interactions are invoked at the 'backend’ WAP
server using Java Servlet technology.

[0072] The supporting layer: This layer provides all the necessary system
supports to the 'Technology Layer', comprises:

1. Programming language support based on Java,

2. Network protocols support such as HTTP, HTTPS, ATP, etc., and

3. Markup languages support such as HTML, XML, WML, etc.

[0073] Each layer of DNA module is described in detail as follows.

[0074] Data layer: This layer is for storing initial data from agent brain and
for IATology-20000 to generate knowledge, at this point, the thinking process
may be initiated, and agent may learn or correct itself according to its
experiences. This layer also explains why agent may think as a human.

[0075] Application layer: With fully support from data layer and neural
network layer, the agent has enough knowledge and thinking capabilities to live
and work on its own.

[0076] Further description of intelligent agent technology (IAT) is provided as
follows:

[0077] Presently, most of the E-business systems on the Internet employ

client/server manner. The disadvantages are: 1) High communication burden; 2)

10

10

15

20

25

WO 2008/006267 PCT/CN2007/000496

reciprocity between enhanced and low level users. Certain objects are need to
achieve said functions: Play the role of a human, to operate independently in the
Internet, being autonomous, and to identify, process and solve problems on its
own.

[0078] The definition of intelligent agent is: Intelligent agent (IA) is an
example of intelligent in terms of device. IA may be a system, software
program, program object or even a robot.

[0079] The intelligent agent in the present invention is with the following 10

basic requirements: 1) autonomous; 2) mobile; 3) reactive; 4) proactive; 5)

“adaptive; 6) robust; 7) communicative and cooperative; 8) learning; 9)

task-oriented; 10) goal-driven. According to these basic requirements, the
working theory of the IATopia agent in the present invention is described. as
follows:

[00801 IATopia Agent is a Java-based program. It is a sub-class of Thread
class, so it can execute its life cycle asynchronously and concurrently inside the
IATopia server. It implements the Serializable interface for packaging agent
itself to migrate from host to host, and it also implements the Cloneable
interface for copying itself to work concurrently with other instances of the
agent. IATopia Server uses Java RMI as the transporting ‘layer of TATopia
Agents between IATopia hosts; agent will be serialized and sent to the target
host by using RMI remote call.

[0081] IATo SDK framework in the implementation of IATopia:

[0082] IATo SDK is an intelligent agent development platform which
implements FIPA Agent Management Specification utilizing Java 2 as the
development language. The goal of IATo SDK is to provide an agent platform
together with a set of API for simplify the development of agent system while

ensuring the system is compliance to FIPA standard. The following table shows

11

10

15

20

WO 2008/006267 PCT/CN2007/000496

the basic building blocks of the platform.

Application Agents or Non-agent based user

application layer

Agent Management _ .
Directory Facilitators
Service

Agent Transport and communication System

Java 2 Standard Edition (JDK 1.4)

[0083] To achieve this goal, IATo SDK offers the following features:

1.

A FIPA-compliant Agent Platform with Agent Management System,
Directory Facilitators and Message Transporting System. All these
components are automatically started with the agent platform.

A registration manager to act as a directory facilitator to act as yellow page
for registering or searching an agent inside the platform.

Message transporting mechanism for agents to communicate with each
other and dispatching agents.

A lifecycle manager as an agent management system to control the agent’s
lifecycle within an agent platform.

A graphical user interface for the users to manage, monitor and log an

agent’s activities (Figure 2)

[0084] Basic component of IATo SDK: The IATo SDK agent platform is

developed compliant with FIPA Agent Management Specification and includes

all mandatory components that must be the in starting lineup with the agent

platform, that are Agent Management System, Message Transport Service and

Directory Facilitator. IATo SDK agent platform is developed by using pure Java

2 Standard Edition (JDK1.4). The mandatory components to startup IATo SDK

12

10

15

20

25

WO 2008/006267 PCT/CN2007/000496

agent platform are LifeCycleManager, RegistrationManager and
CommunicationManager. Figure 3 shows the basic architecture of the IATo
SDK agent platform. IATo SDK provides the necessary mobile agent
implementation APIs for the development of mobile intelligent agent systems.
The basic functionalities and runtime properties of agents are defined by the
Agent, LifeCycleManager RegistrationManager and CommunicationManager
classes.

[0085] IIATo SDK provides necessary mobile intelligent agent object APIs
for the development of mobile intelligent agent system. The basic function and
run time property of intelligent agent are defined by Intelligent AgentPool,
LifeCycleManager RegistrationManager and CommunicationManager.

[0086] Intelligent AgentPool: Basically, all agents must execute within a
virtual place called AgentPool within the server. Thus, when an agent is created
or dispatched, it must be put inside the AgentPool to start execution.

[0087] LifeCycleManager: LifeCyleManager act as the Agent Management
System within the agent platform. It provides all functions of controls within:
the agent platform, comprises creating, suspending, resuming, dispatching and
disposing agents(.

[0088] Intelligent Agent: The Agent is the main character of the mobile agent
concept. This is because it is a mobile software object that can transfer its
software code and status from one host to another in order to perform a specific
task. This can cohvince the development of a Code on Demand system. The
agent has its own mechanism to broadcast or send messages t0 another agent for
communication. When agent wants to ask for a specific service from another
agent, firstly it will ask the RegistrationManager for the related agent’s
information and then ask the AgentPoolManager to get the reference of the

wanted agent for further communication using the message passing mechanism

10

15

20

25

WO 2008/006267 PCT/CN2007/000496

(Figure 4).

[0089] RegistrationManager: The RegistrationManager maintains a list of the
registered agent’s information including the agent’s name, classes location and
information about the service that the agent provides. It also protects the
IATopia Server from anonymous attack. This is because an agent must be
registered before it is allowed to execute inside the agent platform.

[0090] CommunicationManager: The message channel is maintained by the
CommunicationManager. It controls the messages passing within the agent
platform. It also provides a network communication channel for the agent to
dispatch from local to remote sites.

[0091] Internal operation of IATo SDK (Data flow and input/output): By
using these basic components, IATopia Server can provide a number of
operations that helps mobile agent to perform their task.

[0092] Register Intelligent Agent: as shown in figure 5, Agents must be
registered before they can live in the IATopia Server. Therefore, users are
required to input the agent’s information (e.g. Agent’s name, code base and task:
description) by using the graphic user interface provided by IATopia Server
(IATopia Server GUI). After receiving agent’s 'information from user input,
[ATopia Server GUI will generate a request to the RegistrationManager.
RegistrationManager then initialize an object RegistrationInfo and then save in
the RegistrationTable. Finally IATopia Server GUI will be updated to inform
the user after the registration is successful.

[0093] Create Intelligent Agent: as shown in figure 6, after registering an
agent, user can create an agent by using the IATopia Server GUI, by choosing
an appropriate agent’s name in the list. The IATopia Server GUI will ask the
RegistrationManager to get the basic code of the agent class file.

[0094] Then, IATopia Server GUI will send a request to the

10

15

20

25

WO 2008/006267 PCT/CN2007/000496

LifeCycleManager to create an agent. After the agent file is loaded into Java
VM, the LifeCycleManger will send the agent’s reference to the
AgentPoolManager, the AgentPoolManger will add the agent reference to the
ActiveAgentPool. Finally IATopia Server GUI will be updated to inform the
user after the creation is successful.

[0095] Dispatch Intelligent Agent: as shown in figure 7 and 8, when the agent
is created within the IATopia Server, user can use the IATopia Server GUI to
select and dispatch agent. When the IATopia Server GUI receives the user’s
request, it will forward the request to the LifeCycleManager. LifeCycleManager
will ask the RegistrationManager for the AgentCodeBase and then
AgentPoolManager for the AgentReference.

[0096} And then send a dispatch request to the CommunicationManager to
dispatch the agent object and class file if necessary. There is a server listener n
the remote machine. When the listener receives the dispatch request, it will
forward the request to the LifeCycleManager. The LifeCycleManager will then
check with the RegistrationManager that is that agent already registered in the

. remote server.

[0097] And then it will receive the agent object and then ask the
AgentPoolManager to add the AgentReference into the ActiveAgentPool and
update the IATopia Server GUI to notify the user that an agent has come to this
Server.

[0098] Programming IATo SDK: IATo SDK is developed with Java 1.4,
since Java is an object oriented language. By using object oriented approach,
program class or interface can be reused or further extend its function, so that
the effect of outputting basic functionality may be saved. Java is a popular
programming language; development of java program is cheaper and quicker

then other programming languages. The portability of Java compiled code can

15

10

15

20

25

WO 2008/006267 PCT/CN2007/000496

easily be migrated to different kinds of system. Finally, the built-in network
supporting programming mobile intelligent agent is another advantage.

[0099] User interface: As shown in figure 9, there are 4 regions on the user
interface. The upper part contains a set of button including Create, Activate,
Deactivate, Clone, Dispatch, Dispose and Exit. These buttons provide a
user-friendly interface for the user to control the lifecycle of an agent. The
lower part of the interface is the system log that will show the activities that
have been taken place inside the server.

[0100] The middle part of the interface is divided into two areas. The left area
displays the lists of agents that are in different status tree style, while the right
hand side displays in a message broad style.

[0101] A mobile agent must be registered before starting its activities. This
feature is also a security protection of the mobile agent system because it can
prevent anonymous agent entering the system to carry out expected damaging
action. The registration of agent must be done by user by clicking the Create
button. Then a “Create Agent Dialog” -will pop up to ask for required
information about the mobile agent (Figure 10).

[0102] User must input a valid class name of the agent and the source path
that contains the class files inside the file system. Task description is an optional
input, it is used to register the service in the RegistrationManager. Then the
other agent can search for this agent by searching the registered service. After
registering the agent with the task description and source path, user can activate
the agent at any time to initiate its operation.

[0103] User can dispatch the mobile agent object to the other remote host at
any time by clicking the Dispatch button. Then the “Dispatch Agent Dialog”
will pop up to ask for information about where the mobile agent should be

dispatched (Figure 11). Users are required to input the destination host name/IP

16

10

15

20

25

WO 2008/006267 PCT/CN2007/000496

and the port number that the remote server is listening to.

[0104] Intelligent Agent Class: The Agent is the main character of the mobile
agent concept. This is because it is a mobile software object that can transfer its
software code and status from one host to another in order to perform a specific
task. This can ensure the development of a Code on Demand system. The agent
has its own mechanism to send messages to another agent for communication.
[0105] The Agent class is the basic class that the programmer can extend to
create their own customized mobile agent. The API provides all functionalities
that the agent can control its own lifecycle including the method for dispatching,
deactivating, and disposing itself.

[0106] The dispatch method makes the agent hang the execution, save its
status into a file and then send the status to the remote host. And to resume the
execution code with the most updated status in the remote host. The deactivate.
method make the agent stop the execution. The dispose method will stop the:
agent thread’s execution and also clear the status in the memory.

[0107] The Agent class also has a set of methods to get the attributes or the
current status of the agent object. The getAgentName method can get the name
of the agent inside the platform. The getAgentID method can get the ID--
assigned to the agent. The getStatus method can check the agent in active or
Inactive state.

[0108] Now let’s see how do we program our agent with the Agent class. We
should import the IATopiaserver.*, in order to include all of the libraries that
supporting us to write our agent. Then we can define our own agent by
extending the Agent class.

import IATopiaserver.Agent;

public class HelloAgent extends Agent {

// implementation of the agent’s method.

17

10

215

20

25

WO 2008/006267 PCT/CN2007/000496

}

[0109] When an agent is created inside the agent platform, the platform must
call the run method as default to start the execution of the agent thread.
Thetrefore, we can write what is the default action that the agent must take by

overriding the run method.

public void run() {

// default action of the action when created.

[0110] The agent can dispatch itself to the remote host by simply using the
host name / IP and the port number that the remote server is listening to.

public void dispatch(String host_name, int port_num);

[0111] ‘When the agent arrived the remote server, the IATopia Server of the.
remote host will call the arrived method on default to resume the execution of’
the agent thread. Therefore, we should tell the agent what to do in the remote

host by overriding the arrived method.

public void arrived() {

// what action need to take when resuming the execution on the remote host.

[0112] When one agent wants to talk to the other agent, it must get the
reference of the other agent from the LifecyleManager by using getOtherAgent

method with the agent’s name.

public Agent getOtherAgent(String agent_name);

18

10

15

20

25

WO 2008/006267 PCT/CN2007/000496

[0113] After getting the reference of the other agent, the agent can
communication with each other. By using the sendMessge method, we can send
an object which is in any object type and containing any information to the

other agent.

public void sendMessage(Object msg)

[0114] On the other hand, when the agent receive a message from the other
agent. We can override the handMessage method to hand and give the

appropriate response to the message.

public void handleMessage(Object msg) {

// what action need to take for the incoming message.

[0115] Sometimes we may need to get the reference of the LifeCycleManager
in order to do some action, for example, creating the other agent. We can use.

the getLifeCycleManager method to get the reference of the LifeCycleManager.

public LifeCycleManager getLifeCycleManager()

[0116] LifeCycleManager

[0117] LifeCyleManager act as the Agent Management System within the
agent platform. It provides all functionalities of controls within the agent
platform that include creating, suspending, resuming, dispatching and disposing

agents.

19

10

15

20

25

WO 2008/006267 PCT/CN2007/000496

[0118] After getting the reference of the LifeCycleManager, we can do some
operations to control the lifecycle of the other agent inside the agent platform.
[0119] We can create a new instance or reactivate the agent object which is

already be registered in the agent platform by using the agent class name.

public Agent activateAgent(String agentName, String activate)

[0120] By using the deactivateAgent method, the agent will stop its activity

immediately and change the status to inactive.

public void deactivate Agent(String agentName)

[0121] The disposeAgent method will stop :the activities of the agent

immediately and remove the object from memory.

public void dispose Agent(String agentName)-

[0122] When we need to talk to the agent by the client program, we can use
the getOtherAgent of the LifeCycleManager to get the agent reference. So that
we can send message to the agent and then inform the agent that what it may

need to do.

public Agent getOtherAgent(String name)
[0123] Sometimes we may need to broadcast some message to all of the agent
inside the agent platform. Therefore, we can call the getAllAgent to get an

enumeration of agent reference to send message to every agent.

20

10

15

20

25

WO 2008/006267 PCT/CN2007/000496

public Enumeration getAllAgent()

[0124] RuntimeAgent: Sometimes we can write an application that is not
necessary to be initiated by using the IATopia Server interface. Therefore, we
can use a static class method from the RuntimeAgent class to create a new
instance of the agent object by using the server name, listening port number and

then agent class name as the parameter.

public static Agent createAgent(String server, int port, String agentname)

[0125] Various embodiments are provided below:
[0126] (1) HelloWorldAgent. This example shows the simplest way to

create an agent which only display the Hello World Message on a-awt frame.

import IATopiaserver.Agent,

import java.awt.*;

public class HelloWorldAgent extends Agent {
transient Frame my dialog; // transient means that this class will not be
transfer during the disptach
public void run() {
message = "Hello World! T am " + getAgentName();
my_dialog = new MyDialog(this);
my dialog.pack();
my _dialog.resize(my_dialog.preferredSize());
my_dialog.show();

21

10

15

20

25

WO 2008/006267

PCT/CN2007/000496

class MyDialog extends Frame {

private HelloAgent agent = null;

private Label msg = null;

MyDialog(HelloAgent agent) {

}

this.agent = agent;

layoutComponents();

private void layoutComponents() {

msg = new Label(agent.message);
Panel p = new Panel();

add(p);

p.setLayout(new FlowLayout());
add(msg);

public boolean handleEvent(Event ev) {

[0127]

if (evid == Event WINDOW_DESTROY) {
hide();
return true;

}

return super.handleEvent(ev);

(2) HelloWorldAgent2. This example is the same structure as

22

10

15

20

25

WO 2008/006267 PCT/CN2007/000496

HelloWorldAgent but the agent will show the Hello World Message on a awt

frame when it arrived the remote host.

public class HelloAgent2 extends Agent {
transient Frame my_dialog;

String message = null;

public void run() {
dispatch("IATopial", 4444);

public void arrived() {
message = "Hello World! I am " + getAgentName();
my_dialog =new MyDialog(this); -
my_dialog.pack();
my_dialog.resize(my_dialog.preferredSize());
my_dialog.show();

[0128] (3) In this example, an agent called TalkAgent will be created in 2
IATopia Server. The user need to click the connect button to make the
connection between the two chatting agent in different host. Then the users can
talk to each other by using the chatting interface. This examples shows that how
can we create a new instance of the other agent (msgAgent) by using the
getLifeCycleManager method. Also, this example also demonstrates how do the

agent send and handle the message to do the communications.

23

WO 2008/006267 PCT/CN2007/000496

import IATopiaserver.Agent;
public class TalkAgent extends Agent {
transient Framel frame;

String message = null;

public void run() {
frame = new Framel(this);

// codes to show the Framel interface

public void setDialog(Framel dlg) {
this.frame = dlg;

public void handleMessage(Object msg) {
if
(msg.toString().substring(O,msg.toString().indexOf('@‘)).equals("Connect“)) {

frame.appendText("Connected from " +

msg.toString().substring(msg.toString().indexOf('@") + 1,
msg.toString().length()));

}

else {
frame.appendText(msg.toString().substring(msg.toString().indexOf('@")
+ 1, msg.toString().length()));

}

24

10

15

20

25

WO 2008/006267

public class Framel extends JFrame {
TalkAgent agent = null;
msgAgent msgagent = null;
String host ="";
int port = 0;

String chat ="";

//Construct the frame

void btn_Connect_actionPerformed(ActionEvent) {

try {

InetAddress addr = InetAddress.getLocalHost();

host = destHost.getText();

port = Integer.parselnt(destPort.getText());

msgagent

PCT/CN2007/000496

(msgAgent)agent.getLifeCycleManager().activateAgent("msgAgent”,

"ACTIVATE");

msgagent.setMsg("Connect@" + addr.getHostName());

msgagent.getLifeCycleManager().dispatchAgent(msgagent, host, port);

}

catch (UnknownHostException ex) {

}

25

10

15

20

25

WO 2008/006267

void jbtn_Send actionPerformed(ActionEvent €) {

msgagent

agent.getLifeCycleManager().activateAgent("msgAgent”,

"ACTIVATE");

msgagent.setMsg("msg@" + msg.getText());

PCT/CN2007/000496

(msgAgent)

msgagent.getLifeCycleManager().dispatchAgent(msgagent, host, port);

msg.setText("");
msg.updateUI();

public void appendText(String _msg) {

chat += msg+"\n";

text.setText(chat);

import IATopiaserver.Agent,

public class msgAgent extends Agent {

nn,
2

String msg =
public void arrived() {

Agent agent = getOtherAgent("TalkAgent");

agent.sendMessage(msg);

}
public void run() {

}
public void setMsg(String _msg) {

msg=_msg;

26

WO 2008/006267 PCT/CN2007/000496

}

[0129] While implementing the present invention, base on the development
platform of intelligent agent, the present invention is not limited in various
embodiments described above. The present invention may expand to other
application programs, as long as employing the intelligent agent based

development platform to implement various application programs.

27

10

15

20

25

WO 2008/006267 PCT/CN2007/000496

Claims:

1. An intelligent agent based development platform, said platform provides
intelligent agent based development environment, said development platform
comprises:

First module, full artificial intelligence and ontology agent based
application interface are provided to construct various intelligent agent
application; and

Second module, for data storage, intelligent data analysis process, and
providing analyzed results to said first module.

2. The development platform in claim 1, said first module comprises:

Application layer, comprises various intelligent ontology agent based .
application programs, said application programs are integrated by intelligent
agent components of the intelligent layer and the data of said second module.

Ontology layer, base on the brain knowledge of agent, provides necessary
knowledge for agent to initiate its logical and knowledgeable thinking.

Intelligent layer, provides artificial intelligence basic base on the sense
field, logical illation field and analysis field, while utilizes agent components -
provided by technology layer.

Technology layer, provides necessary mobile agent object application
program interface for intelligent agent components of intelligent layer,
comprises providing IATo SDK software development tools of full
multi-intelligent agent based development platform, and providing
understandable marking language to increase the communication of intelligent
agent and IATo ML development tools of data transferring; and

Supporting layer, provides all necessary systems for supporting said layer,
comprises programming languages, communication protocols and standardized

file exchange format that are adopted to facilitate the development of the

28

10

15

20

25

WO 2008/006267 PCT/CN2007/000496

IATopia framework.
3. The development platform in claim 1 or 2, said second module comprises:

Data layer, for storing raw data from intelligent agent brain. It is also the
source of knowledge.

Neural network layer, for manipulating the data stored in the data layer so
that knowledge can be generated and the thinking process can be initiated as
well as the agent can learn or correct itself according to its experiences; and

Application layer, with the fully support from the data layer and neural
network layer, agent have enough knowledge and thinking capability to live and
work autonomously.

4. The development platform in claim 2, application programs in said
application layer comprise:

IATo eMiner, an intelligent ontological web-mining agent system for
e-shopping.

IATo InfoSeeker, an intelligent ontological knowledge based information
searching system.

IATo WeatherMAN, an intelligent ontological weather forecasting agent.

IATo WShopper, an integrated ontological intelligent fuzzy shopping agent
for intelligent mobile shopping on the Internet.

IATo Stock Advisor, an intelligent ontological agent based stock prediction
system.

IATo Surveillant, the automatic ontological agent based surveillance
system.

5. The development platform in claim 1, said intelligent agent comprises the
following requirements: autonomous, mobile, reactive, proactive, adaptive,
robust, communicative, learning, task-oriented, goal-driven.

6. The development platform in claim 2, said IATo SDK development tools

29

10

15

WO 2008/006267 PCT/CN2007/000496

comprise all the mandatory components arranged on intelligent agent
development platform. Said mandatory components comprise intelligent agent
managing system, information transferring server and index arbitrator.

7. The development platform in claim 1, the basic function and run time
properties of said intelligent agent are defined by intelligent agent, lifecycle
manager that provides all the control function, registration manager that records
intelligent agent registration information in the intelligent agent development
platform, and communication manager that controls the message transfer in
intelligent agent platform.

8. The development platform in claim 1, said application program interface
comprises: the first region that provides the functions of creating, activating,
invalidating, copying, distributing, releasing and exiting, the second region that
provides the functions of writing logs and displaying the information of
activation in the server, the third region that provides tree type intelligent agent

list, and the forth region that provides information broadcasting type.

30

WO 2008/006267

PCT/CN2007/000496

¥
S A
é ,/ Data Layer /
bl
'
£ / Neural Network Layer
g s
wn
n:-;-’ / Application Laver
1ATo
" 1ATo {ATo {ATo 1ATo
licat
AP f_a;:rmn eMiner |WeatherMan| WShopper A?jtvoi:gr Survelliant
4 Ontology IAToSC IAToMC IAToKC {ATolLC {AToEC
Layer &
&
S
47~ Intelligent £

Layer | SemsoryArea | Logical .R’easc'ining Area

Analytical Area)

“{pTechnology | “ATo.8DK :

Layer

U aTomy

< Supporting Flay :
tayer

Vs

lm‘tg~ System Component

| i&?ﬁgaa Server ﬁﬁwe Age“ﬁi iﬁ?ﬂﬁ

[ragisterea
[swtive

[Deactivsted
[pispatched

o P

ak e ot ol 1 o ot e G e a

' 3&?13;33& Server Siarted
| Waiting for cornection m Agent

B N R Y

Figure 2

1/7

WO 2008/006267 PCT/CN2007/000496

External
Application

ﬂk

I4Topia Platform

Agent || LifeCycleManager || RegistrationManager

A o B R R
4 e h 4 ‘ :

CommunicationManager

) IATopia Platform

CommunicationManager

Figure 3

AgentPoolManager

RegistrationManager

3. Agent ask for reference
4, AgentPoolManager retumn

1. Agent ask for information
£ reference of the wanted agent

2. RegistrationManager return
related agent information

5. Communication started

Figure 4

217

WO 2008/006267 PCT/CN2007/000496

User |ATopiaServer GUI RegistrationManager| | Registrationinfo RegistrationTable

l registerAgent = | { | |

l

regist[e]r.(,gggntlnformation% :

l
|
l
|
U..... SR AL AL ..>[]

[i _agentinfo 1
l

I
I
P
|
{
I
(
l
l
\
| U
l I
i

l

registerSuccessful

l
|
|
(
|
] i‘ addToTable(agéntlnfo)
|
|
l
i
|

i

i

[
o |
updﬁ@(ﬁa@ﬂﬂmj_ﬁ :
. 1
[l
| |

————

Figure 5

3/7

WO 2008/006267 PCT/CN2007/000496

Use IATopigServe RegistrationManage LifeCycleManage AgentPoolManage AcliveAgentPo
sk lt a registéred 'fg_j r i r ; r i ;
l I \
I sgearch 1] I | I
| 1 T | | |
} j,LAgen!CodeBas_,__.r‘ { ; }
| Te L] ! 1 !
: |] | l |
’_Li __createAgent ll l ‘ I
| J | T | |
| | | addToActiePool(AgentReferenga| l
o T
T X
{ { { : addToActLj:; [T:
l | l l I l
] ! ' ' i«:uealeﬁm:ce.ssi
| | | | i) 1
|] | e) l
1 I | | T I
l J, addTolist ‘ xL l I
| L | L l l
l I l T l |
l l | | | 1
] l | | | I
Figure 6

4/7

WO 2008/006267 PCT/CN2007/000496

addTolist (AgentName)

!
|
i
I

User iJADgﬁnlarver RegistrationMa LifeCygcleMana AgentPoolMan ActweAgentPo Cor;:ﬂmunicaﬁon
nager er ager anager
Sélect an agent to d;spalch 1 l I l ‘
i - l ! ! | l
r,'-f &earch (AgentName i]] }]
| I | | | |
l T AgentCodeBase ‘ l l l
| R | | | 1
I I § | I l l
I %iispatchAgent (agentlD, AgentCodeBase j [' I
i
{ §i{ l ;:getAgent(agentlD»)—Il { :
: : { ‘ rLlngetAgent(agentlli‘)} {
l I l : tJI Age tReference 1 l
} } : | “ {
] l l l <AgentRefervence l l
| l | b I I
} } : ! dispatchAgent(AgentCodeBade, AgentReference) !
| | | | 1
I ,] I ispatchSuccessful]
l !
l |
I 1)
l l
| l
k l

f

|

- c’

| Ll]
|

|

l

|

I

|
)
!
! !
| l
Y |
l |
! 1

Figure 7

517

—

WO 2008/006267

Communication LifeCycleMana

Manager

receiveAger\iL]Agentln{o,AgemRefex
i

]

I
}
I
I
I
I
I
|
|
}
I
I
|
|
I
I
|
|
I

RegistrationMa ReglstratlonTab

g?r naﬂer T

PJLE‘?)

I

I I

5.1: earch(.Agentlnfa.).... o [
I__ earch(Agentinfo.).. .[I
]

l

I

I _«-baveRecord

I

I

| O |
|]
I i
|

AgentPoolMan

aglar
I

I
I
I
|
|
I
I
I
I
l
I

PCT/CN2007/000496

ActiveAgentPo

c1I

I
|
I
I
|
I
I
I
I
I
|
l
|

|ATopiaServer

GllJl
I

|

|
i4]____.___..‘._.acicl?[c:ﬁ.mti.\z ePaol(AgentReference. [I TLl
‘»'. } } addToAcl EQoJ(AgemReteLeru:H
; ; ; jcmateSucnessiu ,
l I createSuccessful l l—L]
o | ! I
I I | LI I
: I I add‘l‘oList (AgentName.) I I
T[I I |
* | I J |
| I I I I
I | I I |

Figure 8

I
I
I
|
|
I
I
I
|
|
|
|
I
|
I
I
I
I
|
/
|
|
|

6/7

' mmte II Deactivate | Clane | nnsmstm | oisnase e

_Eif":I 1ATopia Server mwa &gﬁm 90@3

[Registered ¢

) active

[Deactivated

[pispatcned
\ATopis Server Sterted .. o

Waiting for connection to Agent
Figure 9

WO 2008/006267 PCT/CN2007/000496

Task Description ;

Source Path:

Briefcase Path:

0K || Cancel

Figure 10

Dispaich Agent
{Destination Host

Figure 11

7

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CN2007/000496

A. CLASSIFICATION OF SUBJECT MATTER

See extra sheet

According to International Patent Classification (IPC) or to both national classification and IPC

B.

FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: GO6F G06Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI PAJ EPODOC CNPAT INTELLIGEN+ AGENT ARTIFICIAL STOR??? LAYER

but later than the priority date claimed

C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X WO001/26018A2 (U-KNOW SOFTWARE CORPORATION) 12 Apr. 2001(12.04.2001) 1-8
page 1, line 10-page 11, line 30; figs.1-7
X US2005/0144218A1 (Timothy James Heintz) 30 Jun.2005 (30.06.2005) 1-8
paragraph [0068]-[0219]; figs.1-67
X US2003/0084009A1 (Joseph Philip Bigus et al) 01 May 2003 (01.05.2003) 1-8
paragraph [0011]-[0102]; figs.1-10
X W002/097588A2 (CAMELOT IS-2 INTERNATIONAL, INC. d.b.a. SKYVA 1-8
INTERNATIONAL) 05 Dec.2002 (05.12.2002) page 1, line 22-page 25, line 30; figs.1-20
[J Further documents are listed in the continuation of Box C. B See patent family annex.
* Special categories of cited documents: “T” later document published after the international filing date
rn . Lo or priority date and not in conflict with the application but
A” document defining the general state of the art which is not cited to understand the principle or theory underlying the
considered to be of particular relevance invention
“E” earlier application or patent but published on or after the “X” document of particular relevance; the claimed invention
international filing date cannot be considered novel or cannot be considered to involve
an inventive st hen the d t is taken al
“L” document which may throw doubts on priority claim (S) or venive siep w en fe document 13 .en ‘ (?ne .
L . C “Y” document of particular relevance; the claimed invention
which is cited to establish the publication date of another
o . . cannot be considered to involve an inventive step when the
citation or other special reason (as specified) document is combined with one or more other such
“0” document referring to an oral disclosure, use, exhibition or documents, such combination being obvious to a person
other means skilled in the art
“p” document published prior to the international filing date & document member of the same patent family

Date of the actual completion of the international search

27 Apr.2007 (27.04.2007)

Date of mailing of the international search report

1 - TN 2007 (21 - 0

A-900
A}

[Name and mailing address of the ISA/CN

The State Intellectual Property Office, the P.R.China

6 Xitucheng Rd., Jimen Bridge, Haidian District, Beijing, China
100088

Facsimile No. 86-10-62019451

A" 4 [~ B

v

Authorized officer

CUI, Shangke

Telephone No. (86-10)82336309

Form PCT/ISA /210 (second sheet) (April 2007)

INTERNATIONAL SEARCH REPORT

:) International application No.
Information on patent family members

PCT/CN2007/000496
Patent D ocuments referred Publication Date Patent Family Publication Date
in the Report
WO0126018A 12-04-2001 AU1493201A 10-05-2001
US6381597B 30-04-2002
TW501033B 01-09-2002
CN1408093A : 02-04-2003
US2005/0144218A 30-06-2005 none

US2003/0084009A 01-05-2003 US2003084010A 01-05-2003
WO002097588A 05-12-2002 . W002069142A 06-09-2002
US2002143653A 03-10-2002
W002099718A ' 12-12-2002

Form PCT/ISA /210 (patent family annex) (April 2007)

INTERNATIONAL SEARCH REPORT International application No.
PCT/CN2007/000496

CLASSIFICATION OF SUBJECT MATTER

GOG6F17/40 (2006.01) i
G06Q20/00(2006.01) i
G06Q30/00(2006.01) i

Form PCT/ISA /210 (extra sheet) (April 2007)

	Bibliography
	Claims
	Drawings
	Description
	Abstract
	Search-Report

